Harmonic Maps and the Topology of Conformally Compact Einstein Manifolds

نویسندگان

  • NAICHUNG C. LEUNG
  • Tom Y. H. Wan
چکیده

We study the topology of a complete asymptotically hyperbolic Einstein manifold such that its conformal boundary has positive Yamabe invariant. We proved that all maps from such manifold into any nonpositively curved manifold are homotopically trivial. Our proof is based on a Bochner type argument on harmonic maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

On the Topology of Conformally Compact Einstein 4-manifolds

In this paper we study the topology of conformally compact Einstein 4-manifolds. When the conformal infinity has positive Yamabe invariant and the renormalized volume is also positive we show that the conformally compact Einstein 4-manifold will have at most finite fundamental group. Under the further assumption that the renormalized volume is relatively large, we conclude that the conformally ...

متن کامل

Algebraic Surfaces and 4-manifolds: Some Conjectures and Speculations

Introduction. Since the time of Riemann, there has been a close interplay between the study of the geometry of complex algebraic curves (or, equivalently, compact Riemann surfaces) and the topology of 2-manifolds. These connections arise from the uniformization theorem, which asserts that every simply connected Riemann surface is conformally equivalent to either the Riemann sphere, the plane, o...

متن کامل

Harmonic maps relative to α-connections on statistical manifolds

In this paper we study harmonic maps relative to α-connections, and not always relative to Levi-Civita connections, on statistical manifolds. In particular, harmonic maps on α-conformally equivalent statistical manifolds are discussed, and conditions for harmonicity are given by parameters α and dimensions n. As the application we also describe harmonic maps between level surfaces of a Hessian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004